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Figure 1. Plot of A/Ao vs. irradiation time for monolayer assemblies of 
1 with TP and arachidic acid: [ • ] six adjacent layers of 1:TP in a 1: 
4 ratio; [ • ] six adjacent layers of 1:TP, 1:4; [O] six layers of 1: 
TP, 1:4 alternating with layers of pure TP; [ D ] six layers of 1 :TP, 1: 
8 alternating with layers of pure TP. 

tivity of both 1 and 2 is comparable in the assemblies. Irra­
diation of assemblies incorporating 1 or 2 at 366 nm results 
in a decrease in the long-wavelength absorption band and 
fluorescence and a concomitant increase in absorption at 
265 nm. By analogy to the solid state photochemistry of 1, 
we infer that the photoproduct in the assemblies is a 
dimer. ' ' This is consistent with the observation that the rate 
and extent of disappearance of 1 decreases at higher TP: 1 
ratios. In addition, the efficiency is decreased when layers 
containing 1 are alternated with layers of pure TP, implying 
that both intra- and interlayer dimerization are important 
(Figure 1). 

In both the solid state and in the monolayer assemblies a 
red-shifted (green) fluorescence is present in those systems 
where photodimerization takes place; the fluorescence de­
clines in intensity as the dimer builds up. In the monolayer 
assemblies residual blue (apparently monomer) fluores­
cence persists following the initial fast reaction. These ob­
servations suggest that the green fluorescence may be due 
to an excimer intermediate in the photodimerization. How­
ever, the possibility that the formation of the emissive "ex­
cimer" state12 and dimerization are competitive rather than 
sequential processes cannot be excluded. In contrast to the 
above, no solution photodimerization or excimer emission 
could be observed in saturated solutions of 1 (ca. 0.008 M) 
in acetonitrile; since shorter chain 4-stilbazole salts photodi-
merize in solution,13 the apparent effect of the long chains 
is to inhibit association in solution. Although a number of 
polar aromatic molecules and salts of heteroaromatics are 
known to photodimerize in the solid state,6 the dimers 
formed are almost invariably of the head-to-tail structure 
analogous to 5, reflecting perhaps a minimization of steric 
and like-charge repulsions. In fact 2-stilbazole methiodide 
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photodimerizes quantitatively in the solid state to yield such 
a product.7,14 In contrast, the sole photodimer of 1 in the 
solid state has the head-to-head structure 4; this result 
suggests that in the solid state preferential association of 
hydrophobic groups may be important enough to offset un­
favorable like-charge interactions in the hydrophilic zones. 
This result suggests that incorporation of an orienting hy­
drophobic group could lead to useful directing effects on 
solid state photodimerization and addition reactions. We 
are currently exploring this possibility with several systems. 
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Aromatic Hydroxylation by Peroxydisulfate 

Sir: 

Although the oxidation and cleavage of aromatic side 
chains by peroxydisulfate (usually in the presence of transi­
tion metal ions) is well known,1-3 as far as we are aware, 
the Elbs reaction (hydroxylation of phenols in alkaline me­
dium) provides the only example in which hydroxyl groups 
are efficiently introduced into the aromatic ring.4 Oxidation 
of aromatics by Fenton's reagent (Fe2 +-HaCh) has also 
been reported to give solely side-chain oxidation of a num­
ber of aromatics,2,3 but recently we have found that phenols 
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Table I. Aromatic Hydroxylation by Fe2+-S2O8
2" Reagent0 Table II. Benzene Hydroxylations 

Substrate r Phenolic 
• Products (%) 

Other 
^ i 

Benzene 64 < 1 Biphenyl 
Toluene 21(62-5-33)6 15 Benzyl alcohol 
0-Phenylethanol 40(51-12-37)6 27 Benzyl alcohol 

3 Styrene glycol 
Phenylacetic acid 20(39-18-43)6 47 Benzyl alcohol 

"All runs by slow addition of excess Fe2+ to systems [S2O8
2'] ~ 

8 X 10"3M, [Cu2+] = 0.24 M, [U+] = 0.05 M, substrate = 0.05-1 
M(two-phase with benzene and toluene), T = 30°. Yields are based 
on S2O8

2". 6Ortho-meta-para ratios in phenolic products. 

can be made the major products by carrying out the reac­
tion in the presence of Cu 2 + ion.5 We here report that oxi­
dation of a variety of aromatic molecules by S 2 Os 2 - -Fe 2 + 

in the presence of Cu 2 + also gives phenolic products in good 
yield, a result which has important bearing on the path of 
reaction of both HO- and SO 4 - - radicals with aromatics, 
and which also may be of some synthetic interest. 

Unless indicated, experiments were carried out by adding 
Fe2 + to S 2 Og 2 - -Cu 2 + substrate systems in dilute acid (with 
C l O 4

- as the counterion) and analyzing products by GLC, 
usually after silation. Typical results are shown in Table I, 
and, except for the case of phenylacetic acid, yields of phe­
nolic products are quite comparable to those obtained with 
H2O2 under the same conditions.5 

We believe our results are best rationalized by the fol­
lowing scheme using toluene as an example which has many 
features in common with that which we have proposed for 
the H 2 O 2 system.6 

S,Ofi + Fez Fe3* + SO,2" + SOr" (D 

OSO3
-

Cu2+Jt* 

,* H OSO3
- HO H 

Whether SO4- radicals initially add to the aromatic ring, 
as has been proposed by Norman 2 7 (although he was un­
able to detect esr signals of hydroxycyclohexadienyl radi­
cals and side chain cleavage products7), or directly oxidize 
the aromatic to the radical cation3 is not determined,8 but 
the formation of phenols clearly shows that initial side-
chain attack is usually of minor importance. 

A second conclusion is that our results are further evi­
dence for the very fast reversible hydration of the interme­
diate radical cation B, which seems to us the most plausible 
way of accounting for the formation of phenolic products. 
The possibility that an initial adduct A is oxidized to an 
aryl sulfate which subsequently hydrolyzes is ruled out, be­
cause hydrolysis is very slow in cold dilute acid.9 With ben-

Conditions" 

Fe^+, no Cu2 + 

Fe1+, Cu2 + 

Thermal (75°) 
Thermal+ Cu2+(60° 
Ag+, 10-3 M (40°) 
Ag+, Cu2+ (40°) 

I 
Phenol 

26 
64 
10 
54 

3 
43 

-Yield (%) N| 
Other 

24 Biphenyl 

3 Biphenyl 

Polymers 
Polymers 

a Conditions similar to those in Table I. 

zene we have shown that no appreciable phenyl sulfate ion 
is present in our reaction mixtures, since no increase in phe­
nol yields occurs when they are heated for prolonged peri­
ods. A second possibility, that hydroxyl radicals are formed 
via the exchange 

SOr- + H,0 HSO4- + HO- (3) 

and then add to yield C directly is unacceptable, because it 
is now clear that eq 3 is very slow except in alkaline solu­
tion.10 A third alternative, some direct oxidation of B, can­
not be unequivocally excluded but seems an unnecessary 
hypothesis in view of Norman's observation of species C in 
these systems and our earlier results with H2O2 oxidations.5 

In contrast to the other substrates, phenylacetic acid 
gives significantly less phenolic products than are obtained 
with H 2 O 2 (55% under the same conditions). SO 4 - - radicals 
are known to decarboxylate aliphatic acids,7 and it may be 
that here side-chain attack on the carboxyl group, as pro­
posed by Tanner" competes with oxidation of the aromatic 
ring. Recent results by Minisci indicate that this competi­
tion varies with experimental conditions: oxidation of y-
phenylbutyric acid by S 2 Os 2 - alone gives predominantly 
phenyl butyrolactone, but chiefly decarboxylation with Ag+ 

or at higher pH's.12 

Peroxydisulfate can also be decomposed to SO 4 - - radi­
cals either thermally or by traces of Ag+ . Table II shows 
that in the presence of Cu2 + , these techniques also convert 
benzene to phenol in good yield but give little or no identifi­
able product in its absence. 
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